wd wp Пошук:

Вуглепластыкі

Ліст з вугляпластыку
Вугляродная ламель (пултрузійная пласціна)

Вуглепластыкі (або карбон, карбонапластыкі, ад англ.: carbon — вуглярод) — палімерныя кампазіцыйныя матэрыялы з пераплеценых нітак вугляроднага валакна, размешчаных у матрыцы з палімерных (напрыклад, эпаксідных) смол. Шчыльнасць — ад 1450 кг/м3 да 2000 кг/м3.

Матэрыялы адрозніваюцца высокай трываласцю, калянасцю і малой масай, часта трывалей сталі, але значна лягчэй. Па удзельнай характарыстыках пераўзыходзіць высокатрывалую сталь, напрыклад, легированную канструкцыйную сталь 25ХГСА.

З прычыны дарагоўлі пры эканоміі сродкаў і адсутнасці неабходнасці атрымання максімальных характарыстык гэты матэрыял ўжываюць у якасці ўзмацняюць дапаўненняў у асноўным матэрыяле канструкцыі.

Асноўныя звесткі

Асноўная складаючая частка вугляпластыку — гэта ніткі вугляроднага валакна, які складаецца ў асноўным з атамаў вугляроду. Такія ніткі вельмі тонкія (прыкладна 0,005-0,010 мм у дыяметры[1]), зламаць іх вельмі проста, а вось парваць дастаткова цяжка. З гэтых нітак сплятаюцца тканіны. Яны могуць мець розны малюнак пляцення (ялінка, рагожа і інш.).

Для надання яшчэ большай трываласці тканіны, ніткі вугляроду кладуць пластамі, кожны раз змяняючы кут напрамкі пляцення. Пласты змацоўваюцца з дапамогай эпаксідных смол.

Ніткі вугляроду звычайна атрымліваюць тэрмічнай апрацоўкай хімічных або прыродных арганічных валокнаў, пры якой у матэрыяле валакна застаюцца галоўным чынам атамы вугляроду. Тэрмічная апрацоўка складаецца з некалькіх этапаў:

  1. Першы з іх уяўляе сабой акісленне зыходнага (поліакрыланітрыльнага, віскознага) валакна на паветры пры тэмпературы 250 °C на працягу 24 гадзін. У выніку акіслення ўтвараюцца лесвічныя структуры.
  2. Пасля акіслення следуе стадыя карбанізацыі — нагрэву валакна ў асяроддзі азоту або аргону пры тэмпературах ад 800 да 1500 °C. У выніку карбанізацыі адбываецца утварэнне графітападобных структур.
  3. Працэс тэрмічнай апрацоўкі заканчваецца графітызацыяй пры тэмпературы 1600-3000 °C, якая таксама праходзіць у інэртнай асяроддзі. У выніку графітызацыі колькасць вугляроду ў валакне даводзіцца да 99 %.

Акрамя звычайных арганічных валокнаў (часцей за ўсё віскозных і полиакрилонитрильных), для атрымання нітак вугляроду могуць быць выкарыстаны спецыяльныя валокны з фенольных смол, лігніну, каменнавугальных і нафтавых пекаў Акрамя таго, дэталі з карбону пераўзыходзяць па трываласці дэталі з шкловалакна, але, пры гэтым, абыходзяцца значна даражэй.

Дарагоўля карбону выклікана, перш за ўсё, больш складанай тэхналогіяй вытворчасці і большай коштам вытворных матэрыялаў. Напрыклад, для праклейкі слаёў выкарыстоўваюцца больш дарагія і якасныя смалы, чым пры працы з стеклонитью, а для вытворчасці дэталяў патрабуецца больш дарагое абсталяванне (да прыкладу, такое як аўтаклаў).

Недахопы

Пры вытворчасці вугляпластыкаў неабходна вельмі строга вытрымліваць тэхналагічныя параметры, пры парушэнні якіх трывальныя ўласцівасці вырабаў рэзка зніжаюцца. Неабходныя складаныя і дарагія меры кантролю якасці вырабаў (у тым ліку, ультрагукавая дэфектаскапія, рэнтгенаўская, токавіхравая, аптычная галаграфія і нават акустычны кантроль).

Іншым сур’ёзным недахопам вугляпластыку з’яўляецца іх нізкая ўстойлівасць па адносінах да ударных нагрузак. Пашкоджанні канструкцый пры ўдарах староннімі прадметамі (нават пры падзенні інструмента на яе) у выглядзе ўнутраных расколін і расслаенняў могуць быць нябачныя воку, але прыводзяць да зніжэння трываласці; разбурэнне пашкоджанай ўдарамі канструкцыі можа адбыцца ўжо пры адноснай дэфармацыі, роўнай 0,5 %[2].

Вытворчасць

Вугляпластык

Трубы і іншыя цыліндрычныя вырабы вырабляюць намотваннем. Форма валакна: нітка, стужка, тканіна. Смала: эпаксідная або поліэфірная. Магчыма выраб формаў з вугляпластыку ў хатніх умовах, пры наяўнасці вопыту і абсталявання.

вуглепластыковая падстаўка пад каву.

Прымяненне

Вуглепластыкі шырока выкарыстоўваюцца пры вырабе лёгкіх, але трывалых дэталяў, замяняючы сабой металы, у многіх вырабах ад частак касмічных караблёў да вудаў, сярод якіх:

Вугляпластыкавы неваляшка

Палімеры, узмоцненыя вугляроднымі нанатрубкмі (CNRP)

Вугляродныя нанатрубкі, як аснова вугляпластыку ў некалькі разоў трывалей, гнутчэй чым гума і нават лягчэй чым O2. Матэрыял моцна адрозніваецца ад звычайнага вугляроднага валакна. Такі выгляд вугляпластыку ужыты, у прыватнасці, у канструкцыі самалёта Lockheed Martin F-35 Lightning II.

Зноскі

  1. Углепластик в автомобилестроении - плюсы и минусы(нявызн.). AutoRelease.ru. Архівавана з першакрыніцы 23 жніўня 2011. Праверана 28 студзеня 2019.
  2. {{{загаловак}}}. — 1988. — ISSN 0134-921X.

Літаратура

Тэмы гэтай старонкі (1):
Катэгорыя·Канструкцыйныя матэрыялы