wd wp Пошук:

Гравітамагнетызм

Гравітамагнетызм, гравімагнетызм, часам гравітаэлектрамагнетызм — агульная назва некалькіх эфектаў, выкліканых рухам гравітуючага цела.

Гравітамагнетызм ў агульнай тэорыі адноснасці

У адрозненне ад ньютанаўскай механікі, у агульнай тэорыі адноснасці (АТА) рух пробнай часціцы (і ход гадзінніка) у гравітацыйным полі залежыць ад таго, ці круціцца цела — крыніца поля. Уплыў кручэння адбіваецца нават у тым выпадку, калі размеркаванне мас у крыніцы не змяняецца з часам (існуе цыліндрычная сіметрыя адносна восі вярчэння). Гравітамагнітныя эфекты ў слабых палях надзвычай малыя. У слабым гравітацыйным полі і пры малых скарасцях руху часціц можна асобна разглядаць гравітацыйную («гравітаэлектрычную») і гравітамагнітную сілы, якія дзейнічаюць на пробнае цела, прычым напружанасць гравітамагнітнага поля і гравітамагнітная сіла апісваюцца ўраўненнямі, блізкімі да адпаведных ураўненняў электрамагнетызму.

Разгледзім рух пробнай часціцы ў наваколлі сферычна сіметрычнага цела, якое верціцца, з масай M і момантам імпульсу L. Калі часціца масай m рухаецца са скорасцю

v ≪ c

{\displaystyle v\ll c}

\{\displaystyle v\ll c\} (c — скорасць святла), то на часціцу, акрамя гравітацыйнай сілы, будзе дзейнічаць гравітамагнітная сіла, накіраваная, падобна сіле Лорэнца, перпендыкулярна як скорасці часціцы, так і напружанасці гравітамагнітнага поля Bg Bg[1]:

F

=

m c

[

v

× 2

B

g

]

.

{\displaystyle \mathbf {F} ={\frac {m}{c}}\left[\mathbf {v} \times 2\mathbf {B} _{\mathrm {g} }\right].}

\{\displaystyle \mathbf \{F\} =\{\frac \{m\}\{c\}\}\left[\mathbf \{v\} \times 2\mathbf \{B\} _\{\mathrm \{g\} \}\right].\} Пры гэтым, калі маса, якая верціцца, знаходзіцца ў пачатку каардынат і r — радыус-вектар, напружанасць гравітамагнітнага поля роўная:[1]

B

g

=

G

2 c

L

− 3 (

L

r

/

r )

r

/

r

r

3

,

{\displaystyle \mathbf {B} _{\mathrm {g} }={\frac {G}{2c}};{\frac {\mathbf {L} -3(\mathbf {L} \cdot \mathbf {r} /r)\mathbf {r} /r}{r^{3}}},}

\{\displaystyle \mathbf \{B\} _\{\mathrm \{g\} \}=\{\frac \{G\}\{2c\}\}\;\{\frac \{\mathbf \{L\} -3(\mathbf \{L\} \cdot \mathbf \{r\} /r)\mathbf \{r\} /r\}\{r^\{3\}\}\},\} дзе G — гравітацыйная пастаянная.

Апошняя формула супадае (за выключэннем каэфіцыента) з аналагічнай формулай для поля магнітнага дыполя з дыпольным момантам L.

У АТА гравітацыя не з’яўляецца самастойнай фізічнай сілай. Гравітацыя АТА зводзіцца да скрыўлення прасторы-часу і трактуецца як геаметрычны эфект, прыраўноўваецца да метрычнага поля. Такі ж геаметрычны сэнс атрымлівае і гравітамагнітнее поле Bg.

У выпадку моцных палёў і рэлятывісцкіх скарасцей гравітамагнітнае поле нельга разглядаць асобна ад гравітацыйнага, гэтак жа як у электрамагнетызме электрычнае і магнітнае палі можна падзяляць толькі ў нерэлятывісцкіх гранічных статычных і стацыянарных выпадках.

Ураўненні гравітаэлектрамагнетызму

Згодна з агульнай тэорыі адноснасці, гравітацыйнае поле, спароджанае аб’ектам, што верціцца, у пэўным гранічным выпадку можа быць апісана ўраўненнямі, якія маюць тую ж форму, што і ўраўненні Максвела ў класічнай электрадынамікі. Зыходзячы з асноўных ураўненняў АТА і мяркуючы, што гравітацыйнае поле слабае, можна вывесці гравітацыйныя аналагі ўраўненняў электрамагнітнага поля, якія можна запісаць у наступнай форме:[2][3][4]

Ураўненні гравітаэлектрамагнетызму Ураўненні Максвела у СГС

дзе:

На пробную часціцу малой масы m ўздзейнічае ў гравітаэлектрамагнітным поле сіла, якая з’яўляецца аналагам сілы Лорэнца ў электрамагнітным полі і выражаецца наступным чынам:

F

m

= m

(

E

g

1 c

[

v

× 2

B

g

]

)

.

{\displaystyle \mathbf {F} _{\text{m}}=m\left(\mathbf {E} _{\text{g}}+{\frac {1}{c}}[\mathbf {v} \times 2\mathbf {B} _{\text{g}}]\right).}

\{\displaystyle \mathbf \{F\} _\{\text\{m\}\}=m\left(\mathbf \{E\} _\{\text\{g\}\}+\{\frac \{1\}\{c\}\}[\mathbf \{v\} \times 2\mathbf \{B\} _\{\text\{g\}\}]\right).\} дзе:

Каэфіцыент 2 пры Bg ва ўраўненнях для гравітамагнітнай сілы, якога няма ў аналагічных ураўненнях для магнітнай сілы, узнікае з-за таго, што гравітацыйнае поле апісваецца тэнзарам другога рангу, у адрозненне ад электрамагнітнага поля, якое апісваецца вектарам (тэнзарам першага рангу). Часам гравітамагнітным полем называюць велічыню 2Bg — у гэтым выпадку каэфіцыент 2 знікае з ураўненняў для сілы, а ва ўраўненнях для гравімагнітнага поля з’яўляецца каэфіцыент 1⁄2.

Пры дадзеным вызначэнні гравітамагнітнага поля яго размернасць супадае з размернасцю гравітаэлектрыческага поля (ньютанаўскай гравітацыі) і роўная размернасці паскарэння. Выкарыстоўваецца таксама іншае азначэнне, пры якім гравітамагнітным полем называюць велічыню Bg/c, і ў гэтым выпадку яно мае размернасць частаты, а прыведзеныя вышэй ураўненні для слабага гравітацыйнага поля пераўтвараюцца ў іншую форму, падобную з ураўненнямі Максвела ў сістэме СІ [5].

Характэрныя велічыні поля

З прыведзеных вышэй ураўненняў гравітамагнетызму можна атрымаць ацэнкі характэрных велічынь поля. Напрыклад, напружанасць гравітамагнітнага поля, індукаванага кручэннем Сонца (L=1,6×1041 кг·м²/с), на арбіце Зямлі складае 5,3×10−12 м/с², што ў 1,3×109 разоў менш паскарэння свабоднага падзення, выкліканага прыцягненнем Сонца. Гравітамагнітная сіла, якая дзейнічае на Зямлю, накіравана ад Сонца і роўная 3,1×109 Н. Гэтая велічыня, хоць і вельмі вялікая з пункта гледжання паўсядзённых уяўленняў, на 8 парадкаў менш звычайнай (ньютанаўскай — у дадзеным кантэксце яе называюць «гравітаэлектрычнай») сілы прыцягнення, якая дзейнічае на Зямлю з боку Сонца. Напружанасць гравітамагнітнага поля паблізу паверхні Зямлі, індукаванага кручэннем Зямлі (яе вуглавы момант L=7×1033 кг·м²/с), роўная на экватары 3,1×10−6 м/с², што складае 3,2×10−7 стандартнага паскарэння свабоднага падзення. Круцільны момант Галактыкі ў наваколлі Сонца індукуе гравітамагнітнае поле напружанасцю ~2×10−13 м/с², прыкладна на 3,5 парадку менш цэнтраімклівага паскарэння Сонца ў гравітацыйным полі Галактыкі.

Гравітамагнітныя эфекты і іх эксперыментальны пошук

У якасці асобных гравітамагнітных эфектаў можна вылучыць:

F

= −

(

σ

Ω

) .

{\displaystyle \mathbf {F} =-\mathbf {\nabla } (\mathbf {\sigma } \cdot \mathbf {\Omega } ).}

\{\displaystyle \mathbf \{F\} =-\mathbf \{\nabla \} (\mathbf \{\sigma \} \cdot \mathbf \{\Omega \} ).\}. Гэтая сіла, у прыватнасці прыводзіць да таго, што вага часціцы на паверхні Зямлі, якая верціцца, залежыць ад кірунку спіна часціцы. Аднак рознасць энергій

2 ℏ Ω

{\displaystyle 2\hbar \Omega }

\{\displaystyle 2\hbar \Omega \} для аднолькавых часціц з праекцыямі спіна

± ℏ

{\displaystyle \pm \hbar }

\{\displaystyle \pm \hbar \} на паверхні Зямлі не перавышае 10−28 эВ, што пакуль знаходзіцца далёка за межамі адчувальнасці эксперыменту [3]. Аднак для макраскапічным пробных часціц і спінавы, і арбітальны эфект Лензэ — Тырынга быў эксперыментальна правераны.

Зноскі

  1. 1 2 M. L. Ruggiero, A. Tartaglia. Gravitomagnetic effects. Nuovo Cim. 117B (2002) 743—768 (gr-qc/0207065), формулы (24) і (26).

  2. R.P. Lano (1996). “Gravitational Meissner Effect”. arΧiv:hep-th/9603077 [hep-th].
  3. 1 2
    B. Mashhoon, F. Gronwald, H.I.M. Lichtenegger (1999). “Gravitomagnetism and the Clock Effect”. arΧiv:gr-qc/9912027 [gr-qc].

  4. S.J. Clark, R.W. Tucker (2000). “Gauge symmetry and gravito-electromagnetism”. Classical and Quantum Gravity 17: 4125–4157. doi:10.1088/0264-9381/17/19/311.

  5. M. Agop, C. Gh. Buzea, B. Ciobanu (1999). “On Gravitational Shielding in Electromagnetic Fields”. arΧiv:physics/9911011 [physics.gen-ph].
  6. J. Lense, H. Thirring. Uber den Einfluß der Eigenrotation der Zentralkorper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift, 19 (1918), 156—163.
  7. I. Ciufolini, E. C. Pavlis. A confirmation of the general relativistic prediction of the Lense-Thirring effect. Nature 431 (2004) 958.

Спасылкі

Тэмы гэтай старонкі (3):
Катэгорыя·Агульная тэорыя адноснасці
Катэгорыя·Рэлятывісцкія і гравітацыйныя з’явы
Катэгорыя·Тэорыі гравітацыі